
Revisitation of the localized excitations of the (2+1)-dimensional KdV equation

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2001 J. Phys. A: Math. Gen. 34 305

(http://iopscience.iop.org/0305-4470/34/2/307)

Download details:

IP Address: 171.66.16.95

The article was downloaded on 02/06/2010 at 08:58

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/34/2
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND GENERAL

J. Phys. A: Math. Gen. 34 (2001) 305–316 www.iop.org/Journals/ja PII: S0305-4470(01)14712-8

Revisitation of the localized excitations of the
(2 + 1)-dimensional KdV equation

Sen-yue Lou1,2,3 and H-y Ruan4

1 CCAST (World Laboratory), PO Box 8730, Beijing 100080, People’s Republic of China
2 Department of Applied Physics, Shanghai Jiao Tong University, Shanghai 200030, People’s
Republic of China
3 Physics Department of Ningbo University, Ningbo 315211, People’s Republic of China
4 Institute of Modern Physics, Ningbo University, Ningbo 315211, People’s Republic of China

Received 12 June 2000, in final form 2 October 2000

Abstract
In the previous paper (Lou S-y 1995 J. Phys. A: Math. Gen. 28 7227), a
generalized dromion structure was revealed for the (2 + 1)-dimensional KdV
equation, which was first derived by Boiti et al (Boiti M, Leon J J P, Manna M
and Pempinelli F 1986 Inverse Problems 2 271) using the idea of the weak Lax
pair. In this paper, using a Bäcklund transformation and the variable separation
approach, we find there exist much more abundant localized structures for the
(2 + 1)-dimensional KdV equation. The abundance of the localized structures
of the model is introduced by the entrance of an arbitrary function of the seed
solution. Some special types of dromion solution, lumps, breathers, instantons
and the ring type of soliton, are discussed by selecting the arbitrary functions
appropriately. The dromion solutions can be driven by sets of straight-line and
curved-line ghost solitons. The dromion solutions may be located not only at
the cross points of the lines but also at the closed points of the curves. The
breathers may breathe both in amplitude and in shape.

PACS numbers: 0230, 0220, 0540

AMS classification scheme numbers: 17B66, 17B68

1. Introduction

(1 + 1)-dimensional solitons and solitary wave solutions have been studied quite well both
in the theoretical aspect and in the experimental aspect [3]. In (2 + 1) dimensions, some
significant integrable models such as the Kadomtsev–Petviashvili (KP) equation [4], the
Davey–Stewartson (DS) equation [5], the Nizhnik–Novikov–Vesselov (NNV) equation [6],
the (2 + 1)-dimensional KdV equation (also named the asymmetric NNV (ANNV) equation,
or BLMP (Boiti–Leon–Manna–Pempinelli) equation) [2] and the (2 + 1)-dimensional sine–
Gordon (2DsG) [7] have also been established in nonlinear physics. Some special types of
localized solution, dromions, which were first introduced in [8], for these (2 + 1)-dimensional
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integrable models have also been obtained by means of some different approaches. Usually, the
dromion solutions one finds are driven by straight-line solitons and the dromions are located
at the cross points of the straight lines. For instance, for the DS and the NNV equations
the dromion solutions can be obtained from two perpendicular line ghost solitons [9, 10],
while for the KP equation the dromion solution can be driven by two non-perpendicular line
solitons [11]. In [1, 12], one of the present authors (Lou) pointed out that the dromions may
also be driven by curved-line solitons. From the symmetry study of the (2 + 1)-dimensional
integrable models we know that there exist much more abundant symmetry structures than
in (1 + 1) dimensions [13]. This fact hints to us that the localized solutions of the (2 + 1)-
dimensional integrable models may have quite rich structures that have not yet been revealed.
Using the classical Lie symmetry approach to the 2DsG equation, we find that the soliton
solutions of 2DsG have much more abundant structures [14].

In this paper, we are interested to reveal the more abundant dromion structures for the
(2 + 1)-dimensional KdV equation equation,

ut + uxxx − 3vxu− 3vux = 0 (1)

ux = vy (2)

which was first derived by Boiti et al [2] using the idea of the weak Lax pair. The equation
system (1) and (2) can also be obtained from the inner parameter-dependent symmetry
constraint of the KP equation [15]. In [15], we point out that (1) and (2) is an asymmetric part
of the NNV equation. In the remainder of this paper, we call (1) and (2) the ANNV equation
for simplicity.

To find some exact physically significant coherent soliton solutions (which are localized
in all directions) in 2 + 1 dimensions is much more difficult than in 1 + 1 dimensions.
There are a wealth of methods for finding special solutions of a nonlinear partial differential
equation (PDE). Some of the most important methods are the inverse scattering transformation
(IST) [16], the bilinear method [17], symmetry reductions [18], Bäcklund and Darboux
transformations [19] and so on. In comparison with the linear case, it is known that IST
is an extension of the Fourier transformation in the nonlinear case. In addition to the Fourier
transformation, there is another powerful tool called the variable separation method in the
linear case. Recently, two kinds of ‘variable separating’ procedure have been established. The
first method is called the ‘formal variable separation approach’ (FVSA) [20], or equivalently
the symmetry constraints or nonlinearization of the Lax pairs [21]. The independent variables
of a reduced field in FVSA have not totally been separated though the reduced field satisfies
some lower-dimensional equations. The second type of variable separation method had been
established only for the DS equation and the asymmetric DS equation [22]. For the DS equation,
by solving its bilinear form and introducing a prior ansatz, some special types of exact solution
of the (2 + 1)-dimensional DS equation can be obtained from two (1 + 1)-dimensional variable
separated fields [22].

In section 2 of this paper, we extend the second type of variable separation approach to find
some special solutions of the ANNV equation. Two special linear variable separated equations
can be found by means of a prior ansatz related to a special Bäcklund transformation. After
solving the linear equations, a general solution of the ANNV equation with one arbitrary
function of two independent variables {x, t} and four other arbitrary functions of single
independent variable with respect to y and t can be found. Some special types of localized
structure are discussed in section 3 by selecting the arbitrary functions appropriately. Section 4
is a short summary and discussion.
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2. Variable separation procedure for the ANNV equation

To use the variable separation approach, we take the following Bäcklund transformation:

u = −2(ln f )xy + u0 v = −2(ln f )xx + v0 (3)

where {u0, v0} is an arbitrary known seed solution of the ANNV equation.
Substituting (3) into (1) and integrating once with respect to x leads to a bilinear form

[DtDy +D3
xDy − 3v0DxDy − 3u0D

2
x + c(y, t)]f · f = 0 (4)

where c(y, t) is an arbitrary integrating function and the operators Dt,Dx,Dy are defined as

Dmx D
n
yD

k
t f · f = lim

x ′=x,y ′=y,t ′=t

(
∂

∂x
− ∂

∂x ′

)m (
∂

∂y
− ∂

∂y ′

)n (
∂

∂t
− ∂

∂t ′

)k

×f (x, y, t) · f (x ′, y ′, t ′)

which were introduced first by Hirota [23]. Equation (2) is satisfied identically under the
transformation (3).

To find some exact solutions of (4) via the variable separation approach, similar to the
case in the DS equation [22], we looking for the solution of (4) in the form

f = 1 + a1p(x, t) + a2q(y, t) + Ap(x, t)q(y, t) (5)

where a1, a2 and A are arbitrary constants and p ≡ p(x, t) and q ≡ q(y, t) are functions of
{x, t} and {y, t} respectively. It is clear that the variables x and y have now been separated
totally to the functions p and q respectively.

Substituting the ansatz (5) into (4), we have

(A− a1a2)(pt + apxxx − 3v0px)− (a2 + Ap)[(a2 + Ap)− f q−1
y ∂y]qt

+3(qA + a1)q
−1
y ((a1 + Aq)p2

x − fpxx)u0 + c(y, t)f 2q−1
y = 0. (6)

Because p is y independent and q is x independent, equation (6) can be separated into two
equations

pt = 3v0px − pxxx − (a1a2 − A)(c1p
2 − c3p + c2) (7)

qt = c1(1 + a2q)
2 + c2(a1 + Aq)2 + c3(1 + a2q)(a1 + Aq) (8)

if we restrict the seed solution {u0, v0} we have also a variable separation form

u0 = 0 v0 = v0(x, t) (9)

and the function c(y, t) is fixed as

c(y, t) = −2(a2
2c1 + a2Ac3 + A2c2)qy (10)

where v0 ≡ v0(x, t) is an arbitrary function of x and t , and ci ≡ ci(t), i = 1, 2, 3 are arbitrary
functions of t introduced by the variable separation procedure.

To give the general solutions of (7) and (8) for any fixed v0 is still very difficult. Fortunately,
because v0 is an arbitrary function of x and t , we can treat the problem alternatively by
considering p to be an arbitrary function of x and t and fixing the function v0 by (7). The
result reads

v0 = (3px)−1[pt + pxxx + (a1a2 − A)(c1p
2 − c3p + c2)]. (11)

The general solution of (8) can also be obtained thanks to the fact that c1, c2 and c3 are arbitrary
functions. For the special case,

a2
2c1 + a2Ac3 + A2c2 = 0 (12)
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equation (8) is a linear equation only. The general solution in this special case can be written
as

q = exp

( ∫ t

C1(t
′) dt ′

)[ ∫ t

C0(t
′) exp

(
−

∫ t ′

C1(t
′′) dt ′′

)
dt ′ + F1(y)

]
(13)

where

C1(t) = (a1a2 − A)a−1
2 (a2c3 + 2c2A) (14)

C0(t) = (a1a2 − A)a−2
2 ((a2a1 + A)c2 + a2c3) (15)

and F1(y) is an arbitrary function of y. For the general case,

a2
2c1 + a2Ac3 + A2c2 	= 0 (16)

we may rewrite c1, c2 and c3 as

c1 = A2A2t

(a1a2 − A)2 − A(a1 + AA2)A1t

(a1a2 − A)2A1
− (a1 + AA2)

2A3t

(a1a2 − A)2A1
(17)

c2 = a2
2A2t

(a1a2 − A)2 − a2(1 + a2A2)A1t

(a1a2 − A)2A1
− (1 + a2A2)

2A3t

(a1a2 − A)2A1
(18)

c3 = (A + a1a2 + 2a2AA2)A1t

(a1a2 − A)2A1
− 2a2AA2t

(a1a2 − A)2 + 2
(1 + a2A2)(a1 + AA2)A3t

(a1a2 − A)2A1
(19)

with A1 ≡ A1(t), A2 ≡ A2(t) and A3 ≡ A3(t) being arbitrary functions of t . Using the
relations (17)–(19), (8) becomes

qt = −1

A1
[A3t q

2 − (A1t + 2A2A3t )q − A1A2t + A2A1t + A2
2A3t ]. (20)

It is quite straightforward to verify that the general solution of (20) has the form

q = A1

A3 + F2(y)
+ A2 (21)

where F2 ≡ F2(y) is an arbitrary function of y.
Finally, substituting (5) into (3) we find that the ANNV equation possesses an exact

solution

u = 2qypx(a2a1 − A)
(1 + a1p + a2q + Apq)2

(22)

v = 2(a1 + Aq)2p2
x

(1 + a1p + a2q + Apq)2
− 2(a1 + Aq)pxx
(1 + a1p + a2q + Apq)

+ v0 (23)

where p is an arbitrary function, q is given by (21) and v0 is determined by (11) with (17)–(19).

3. Some special localized solutions

In [1,10], it was pointed out that the ANNV equation possesses some special types of coherent
structure for the physical field u rather than the potential v. From the expression (22), we
know that the ANNV equation has much more abundant coherent structure than those known
in the literature thanks to the arbitrariness of the functions of p and ci .

Generally, for arbitrary p and q with the boundary conditions

p|x→−∞ → C1 p|x→+∞ → C2 q|y→−∞ → C3 q|y→+∞ → C4 (24)

where C1, C2, C3 and C4 are arbitrary constants which may be infinities, (24) is a coherent
soliton solution localized in all directions. Here are some interesting special examples.
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3.1. Multi-dromion solutions driven by straight-line ghost solitons

Usually, the multi-dromion solutions which are localized in all directions are driven by multiple
straight-line solitons with some suitable dispersion relations [10], and the dromions are located
at the cross points of the straight lines. If we restrict the functions p and q as

p =
N∑
i=1

exp(kix + ωit + x0i ) ≡
N∑
i=1

exp(ξi) (25)

q =
M∑
i=1

exp(Kiy + y0i )

J∑
j=1

exp(�j t) (26)

where x0i , y0i , ki, ωi,Ki and �i are arbitrary constants andM,N and J are arbitrary positive
integers, then we have the first type of special multi-dromion solution. The selection (26)
corresponds to

A3(t) = 0 F−1
2 =

M∑
i=1

exp(Kiy + y0i ) A1 =
J∑
j=1

exp(�j t) A2 = 0. (27)

There is no dispersion relation among ki, ωi,Ki and�i . The known dromion solutions given in
the literature like [10] are just the case when one introduces the dispersion relations, ωi = −k3

i

and fixes �i as zero. From (7), we know that the dispersion relation, ωi = −k3
i , has to be

introduced if one fixes v0 and ci , i = 1, 2, 3 as v0 = ci = 0.

3.2. Multi-dromion solutions driven by curved-line ghost solitons

In [1], we pointed out that, for the ANNV equation, the dromion solutions can be driven not
only by straight-line solitons but also by curved-line solitons. Actually, (22) can be rewritten
as

u = QyPx(a2a1 − A)
[
√
A cosh(P +Q + ln

√
A) +

√
a1a2 cosh(P −Q + ln

√
a1 − ln

√
a2)]2

(28)

where Q and P are related to p and q by p = exp(2P), q = exp(2Q). So the general
multi-dromion solutions of the ANNV expressed by (22) (or equivalently (28)) are driven by
two sets of straight-line solitons and some curved-line solitons. If the first set of straight-line
solitons appears in the factorQy , say, one can take

Qy =
N∑
i=1

Qi(y − yi0) (29)

where Qi = Qi(y − yi0) denotes a straight-line soliton which is finite at the line y = yi0
and decays rapidly away from the line. The second set of straight-line solitons appears in
the factor Px . For instance, any multi-soliton solutions of any 1 + 1-dimensional integrable
models can be chosen as Px . Of course Px can also be taken as in the similar form of (29).
Finally, the curved-line solitons are determined by the factors

√
A cosh(P +Q + ln

√
A) and√

a1a2 cosh(P −Q + ln
√
a1 − ln

√
a2) of (28) and the curves are determined by

P +Q + ln
√
A = min(P +Q + ln

√
A) (30)

P −Q + ln
√
a1 − ln

√
a2 = min(P −Q + ln

√
a1 − ln

√
a2) (31)

while the number of curved-line solitons is determined by the branches of the equations (30)
and (31). The dromions are located at the cross points and/or the closed points of the straight
and curved lines.
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Figure 1. Static dromion solution driven by two curved-line solitons located at x3 +y2 + 1
2 ln 10 = 0

and x3 − y2 − 1
2 ln 2 = 0, which corresponds to P = x3,Q = y3, A = a1 = 10, a2 = 20.

Figure 1 is a plot of a static dromion solution by taking simply Q = y2, P = x3, A =
a1 = 10, a2 = 20. The dromion shown by figure 1 is driven by two curved-line solitons and
the curved lines have the forms

x3 + y2 + 1
2 ln 10 = 0 (32)

x3 − y2 − 1
2 ln 2 = 0. (33)

It should be pointed out there is no cross point of the curves (32) and (33) at all. Figure 1
shows us that a dromion can exist not only at the cross point of the lines but also at the point
between the closed points of the curved and straight lines!

3.3. Multi-lump solutions

It is also known that in high dimensions, like the KP equation, a special type of localized
structure (called lump solutions) may also be formed by rational functions. The situation
occurs also in the ANNV case. Figure 2 shows a multi-lump structure of the ANNV equation,
where p and q in (22) are simply fixed as p = x2 and q = y2 with the parameters a1 = A = 1
and a2 = 2.

3.4. Oscillating dromion solutions

If some periodic functions in space variables are included in the functions p and q, we may
obtain some types of dromion solution with oscillating tails in certain directions. For instance,
if we take

p = exp(x(cos x + 4/3)) q = exp(y) (34)

then we can obtain a dromion solution oscillating in the x direction.
Figure 3 is a plot of the oscillating dromion structure with the condition (34) and

a1 = a2/2 = A = 1.
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Figure 2. A multi-lump structure of the ANNV equation for p = x2, q = y2 and a1 = a2/2 =
A = 1.
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Figure 3. An oscillating dromion solution with the condition (34) and a1 = a2/2 = A = 1.

3.5. Ring soliton solutions

In high dimensions, in addition to the point-like localized coherent excitations, there may
be some other types of physically significant localized excitation. For instance, in (2 + 1)-
dimensional cases, there may be some types of ring soliton solution which are not equal to
zero identically at some closed curves and decay exponentially away from the closed curves.
For the ANNV equation, some special types of ring soliton solution can also be found. For
instance, if the functions P andQ in (28) are selected as

P1 = x2/4 − 25 Q = y2 (35)

then the curve (30) becomes a ring (an ellipse), x2/100 + y2/25 = 1. Figure 4 shows the
corresponding ring soliton structure for the field u (28) with (35) and a1 = a2 = A− 1 = 0.



312 S-y Lou and H-y Ruan

−10
−5

0
5

10

x

−10

−5

0

5

10

y

−10

0

10

u

Figure 4. A special ellipse ring soliton solution for the field u (22) with (35) and a1 = a2 =
A− 1 = 0.

3.6. Standing and moving breather-like structures

Obviously, if some types of periodic function of time t are included in the above types of
localized solution, then all these types of solution become the corresponding breathers. For
instance, if we change P andQ in (35) as

P = (cos t + 9/8)((x − v1t)
2/4 − 25) Q = y2 + sin t + 10/9 (36)

then the static ring soliton becomes a moving (or standing for v1 = 0) breathe like ellipse ring
soliton solution.

From equation (36), we know that the ring breather solution (28) with (36) breathes not
only in its amplitude but also in its shape (radii) of the ellipse.

Figure 5 is a plot of a dromion type of breather solution of (22) with a1 = A = 10, a2 = 20
and

p = exp(x(cos(t) + 20/19)) q = exp(y) exp(sin(t)) (37)

at t = −π,−π/2 and 0. From figures 5(a)–(c), we can see that this type of breather solution
breathes also not only in its amplitude but also in its shape. In figure 5(a), we have used a
quite different scale of x because the breather has a quite extended shape in the x direction for
t = −π while the breather has the narrowest shape in the x direction when t = 0.

3.7. Instanton-like excitations

If a further decaying factor of time t is contained in p and q of (22), say, multiplying p or q
by sech(t), then the localized structures listed in (i)–(vi) become the instanton-like solutions.

Figure 6 plots another type of instanton solution of the field u shown by (28) with

P = x3 + t2 − 2 Q = y2 + 2t2 − 4 a1 = A = 10 a2 = 20 (38)

at t = 0,±√
2 − ln(20)/8 ≡ t0 and ±2.5. From figures 6(a)–(c), we see that the amplitude(s)

of the dromion(s) will decay rapidly as |t | increases.
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Figure 5. A single-dromion-type breather solution for the field u (22) with (37) and a1 = A =
10, a2 = 20 at times (a) t = −π , (b) t = −π/2 and (c) t = 0.
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Figure 6. An evolution plot of the instanton solution (28) with (38) driven by two separating curved
solitons at times (a) t = 0, (b) t = ±√

2 − (ln 20)/8 and (c) t = ±2.5.
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The dromion solution shown by figure 6 is driven by two moving curved-line solitons
located at

x3 + y2 + 3t2 + 1
2 ln 10 − 6 = 0 (39)

x3 − y2 − t2 − 1
2 ln 2 + 2 = 0. (40)

For |t | < t0, the curves (39) and (40) have two cross points. So, in principle, (28) with (38) is
a two-dromion solution for |t | < t0 as shown in figure 6(a) at t = 0. When |t | = t0, two cross
points (and then two dromions) are degenerated to one. As |t | increases to over the critical
value t0, there is no cross point of the curves (39) and (40) and only one dromion is located at the
closed point of the curves. As the time |t | becomes longer, the distance between the curves will
be larger. As the curves become far away each other, the dromion disappears rapidly (the ampli-
tude of the dromion decays exponentially). From figures 6(a)–(c), we can see that as the time |t |
increases from 0 to 2.5 the amplitude of the dromion decays tremendously from ∼10 to ∼10−7!

4. Summary and discussion

In summary, starting from a Bäcklund transformation and using the variable separation
approach for the (2 + 1)-dimensional ANNV equation, we may obtain many new types of
multi-soliton solution because of the existence of the arbitrary functions appearing in the
seed solution and in the variable separation procedure. By selecting the arbitrary functions
appropriately, the multiple localized solution (22) may be dromions, lumps, ring solitons,
breathers, instantons etc.

The dromions may be driven by some sets of straight-line solitons and curved-line solitons.
Dromions may located not only at the cross points of the curved lines but also the closed points
of the curved lines. (2 + 1)-dimensional breathers may breathe not only in amplitude but also
in shape. The instantons in (2 + 1) dimensions may have also quite rich structures. Every
type of localized structure, such as dromions, lumps, ring solitons and breathers, may become
instantons. For instance, as shown in figure 6, the dromion solution driven by two curved
lines is an instanton if the curves are separated far apart as the time increases. The richness
of the (2 + 1)-dimensional solitons (and solitary waves) may be found also in other high-
dimensional models. For instance, using a similar method to the NNV equation, we may
obtain also similar abundant localized coherent structures like the ring dromions, breathers
and instantons [24]. By means of the standard classical Lie approach to the 2DsG equation
proposed by Konopelchenko and Rogers, we pointed out that the 2DsG equation possesses
also quite rich localized coherent structures like curved solitons, dromions, ring-type (basin-,
plateau- and bowl-like) solitons and instantons [14]. Actually, even for some types of high-
dimensional nonintegrable model [25], there may be quite rich localized structures.

The variable separation method in linear physics is a very powerful method. Now we have
extended the variable separation approach to some (2 + 1)-dimensional nonlinear integrable
models such as the DS, asymmetric DS, ANNV and NNV equations. We hope that the method
may also be used for other (2 + 1)-dimensional integrable (and/or even nonintegrable) models.
More about the method and the properties of the multiple localized coherent solutions are
worthy of further study.
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